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Progrece Report
8/1/95-7/31/96

AASERT Grant No'.‘F DF49620-93-1- 0521

John Strain
Department of Mathematics
University of California, Berkeley

This grant supported rescarch by two UC Berkeley graduate students on
computational fluid dynamics and materials scicnce. Both are developing Inno-
vative numerical methods for flows aronnd complex boundaries such as oceur in
aolidification from the suelt. Research summaries for each student follow.

Ricardo Cortez (currently an NSF postdoctoral fellow at Courant Insti-
tute) studied magnetization methoda for fluid flow.

A new formulatiou of 3-dimensional incompressible fluid flow has been pre-
sented recently with the introduction of a ncw variable sometimes 1efetred to
as “velocity magnetization™ or simply “magnetization.” A discretization of the
reculting equations produces a Namiltonian system which, in turn, leads to a
new family of Lagrangian numerical methods for the study of incompressible
flow. These numerical methods are essentially independent of spatial dimension
end have the property that they preserve disciete invariants associated with
the Hamiltonian. However there are many issues related to this new formmla-
tion that require further investigation in order to arrive at efficient numerical
algorithms that may be used in a varicty of situations. These issues include:

1. The design of robust hybrid methads. using vorticity end magnctication
variables. The maguelization varlables can be used in conjunction with
vortex methods in order to exploit the advantages that each representation
offers. Accurate and relatively inexpensive procedures to switch from one
computational variable to the other are required. :

2. Procedures 1o ensurc that the magnetization remaing optimal or ncarly
optimal. For a given initial configuration, magnetization naturally tends to
evolve into alloweble configurations that depart from the optimal one. In
three dimensiona, finding the latter is a problem related to finding minimal
suifaces altached to 8 fixed frame. The accuracy of the numerical method
is related to the distribution of magnetization, making the problem of
finding the optimal configuration a crucial part of the mcthod,
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3. Applicability of these mcthods nesr boundarics. The formulation of the
Navier-Stnkes equations in terms of maguetization hac the potential of
suggesting ncw ways of dealing with creation of vorticity inside boundary
laycrs. '

4. Desingularization of the equations of motion and appropriaic fast summa-
ton lechniques. The differential equations that govern the evolution of
the particle positions and the magnctization they carry have high-order
singnlarities, O(r"¥1) where n is the dimension of the problem. The or-
der of the singularitics has an adverse eflect on the speed up attained by
some faet cummation techniques; therefore, an effort must Le wade to
reduce the order of the singularities in the squations and to develop fast
swmmation procedures that are well suited for these equations.

5. Mathematicel theory. The tclationship between paramcters of the method
and other necessary conditions for the convergence of the discrete variables
to their coutinuous counterparts are only conjectured. Thete is a nced for
thenary that provides convergence and stability proofs and error bounds
bascd on discretization parameters.

During the academic years 1993-94 and 1994-95, this AASERT grant sup-
potted intensive work on some of the above issues, continuing the work on vortex
methods which was dane under the support of AFOSR Grant No. FDF49620-
93-1-0053 during the last few years. A summaty of Dr. Cortez’s results follows.

In two dimensions, the tclationship between discretc maguctization variables
' and vortices has been established by a rigorous interpretation of magnetizstion
a5 vorlex dipoles with a prescribed dipole moment. For a given discretization,
each magnetizsation vector ean be replaced by a pair of vortices of equal but
opposite strength located some small distance apart. Then, vertices sufficiently
“ncar” others can be combined into s single vortex with strength equal to the
sum of individual strengths. This collapsc of vorticcs keeps the computation
feasible. Error analysis provides a criterion for haw near vortices should be in
order to be combiued. The distance between the vortices is a patametet which
is chosen so that the orror in this procedure is of a prescribed size.

myz
|y

Example of combination of vortices

The reverse procedure hae aleo been accomplished. Given a set of vorlices
of net vorticity zero, one can extract subseta io be represented by a string
of vortex pairs, which are then approximated by magnetization vectors. The
errors in bath procedures are shown to be O(h?), where h is the dipole distance.
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The sbility to cwitch from mnbnctiza'ion to vorticity and back allows numerical
experiments that compare particle positions obtained by magnetization methods
with those obtained by well understood vortex methods, and provides a very
important first step toward the making of hybrid methods. The nucrical
experiments show the order of convergence.

In many physical siluations, a inagnetization configuration, which initially
represents & given set of vortices to a prescribed accuracy, cvolves naturally in a
way that endurcs accuracy loss to the point where the magnetization no longer
approximatcs the original voitices evolved in tite. The velocity field due to
a string of magnetization vectors connecting two vortices has been intcrpreted
as an approximation to the line integral that represents the velocity field due
to the vortices. The loss of accuracy is now understuod as the deterioration
of the approximate line integral dite to the stretching of the curve along which
we iutegrate. This understanding has led to various procedures that correct
the problem and encurc that the magnetization remains optinal by maintaining
the initial accuracy over time. Some of these procedures periodically discard
the integratiou curve aud replace it with a more convenicnt one, computing a
new magnetization field a]onb the new curve. Others use the original cuve but
refine the intervals used in the quadratiire 8o as ta maintain the initial accuracy.

The latter casc is less efficient since the number of particles may grow without

bound, but it has a natural extension to 3-dimencional problems. There, a
magnetization vector is approximated by s vortex loop on the plane narmal to
the vector; these loops can be split into smaller unes to maintain the accuracy
of the discretization. The first draft of the work above has been written as port
of Mr. Cortez’s dissertation.

Magnetization variables are particularly well suited for problems in which

vortex dipoles are used. One such problem is the motion of an elastic membhrane

hamersed in a fluid, where the effects of elastic forces acting on the fluid can
be introduced as the rate of change of magnetization. The forces that the
membrane imparts on the fluid over a amall time interval represent impulee,
and their effect can be introduced via vortex dipoles. In other words, the forces
represent an evolving magnetization ficld on the membrane. This application
has been implemented in two dimensions for smoath memhranes and inviscid,
incom prcssnblc flow.

RR? is thought of as a etarting point for the understending of magnctlza-
tion and for providing extensions to H>. In three dimensions, maguetization
varisbles have the advantage gver vortex methods of automstically yiclding
a divergence-free vorticity field. This is a source of problems with 3-D vor-
tex methods. Problems with 3-D magnctization methods include the arbitrary
shape of the loops whea two neighloring loops must be combined, and the need
to find minimal surfaces when a new magnetization representation of large vor-
tex loops is nceded. Computationally efficient extensions of the 2.dimensional
results will provide a promising arena for the modeling of 3-dimensional fluid
flow.
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Hans Johansen is a doctoral candidate in the Department of Mcchanical
Engineering at the University of California, Berkeley. His research foenses on
finitc diffcrence methods for simmlation of uusteady fluid dynainics, especially in
bulk Czachralski erystal growth of multi-componant semiconductor substrates.
One of the major factors that limits the guality of such crystals, is the eflect of
convection in the mclt on thermal gradients and composition in the solid pliase
(for example, see Derby [2]). By acenrately representing the mielt interface,
fluid dynamics, and heat transfer, one can better predict ctystal characteristics
based on the furnace geometry and thermal environment. In addition, because
the growth process is lengthy, there is the possibility of active contrel of certain
ctucible factots, such as applicd maguetic fields and time-dependent heating.

M. Johansen's approach is baced on previous work with “Cartesian grid”
and “volume-of-fiuid” methods for unsteady fluid.dynamies. These methods
represent the problem vu a square finite difference grid and apply standard dis-
erotization techniques to the interior of the domain. Near irrcgular boundarics,
on a smaller number of points, special algotithms are used to advance the soln-
tion, taking the local geometry into acconnt. These Cartesian grid methods were
recently applied to inviscid compregsible flows by Pembet, ot al[3], Time step
constraints (due to small cells) were overcome by redistributing excess fhixes to
larger neighboring eclls, while also maintaining conservation. The spproach
also includes AMR, local Adaptiva Mesh Refinement of the finite-diffetence
grid, based on work done by Berger and Colella [4]; results for two- and three-
dimensional regione compare well with other, more cxpensive computations. A
similar approach has been developed for incompressible flows by Almgren et
al. (18], which included efficient solution of a Poisson equation, with no-flux
boundary conditions, on the irregular domain. Yolume-of-fluid algorithms have
been applied to 8 number of problems in compressible flow. Chern and Calella
[6] implemented couscrvative iuterface tracking for compressible flow, using 8
Simple Line Interface Calculation (SLIC}), to represent the boundary between
different gases. When combined with AMR, the method produced excellent cor-
rclation with experiments of shocks impiugiug on gas interfaces (6], even with
the first-order representation of the front. Since then, similsr volume of fluid
algorithms have been developed for multifiuid compressible flows (7], even in-
cluding combustion {8], and complicated physical domaius [9].

These papers demanstrate that modeling the melt motion is certainly within
the capabilities of 8 volume-of-fiuid method. The Jargest hurdle in applying it
to cryctal growth is developing an algorithm for tracking the iutesface, while
maintaining conservation of energy. Once this is accomplished, a multi-step,
prediclor-corrector algorithim can be used to advance the solution in time, in
which both the melt interface and container gecometry will be represcuted using a
hybrid front-tracking method derived from work mentioned above. Combining
the Stcfan problem with an integrator for the Boussinesq equations for the
melt ( similar to recent progress for incompressible flows {11, 13, 14] ), will Le
the last step for the basc algorithm. Adding an adaptive, finite-difference grid
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hietarchy will provide local refinement of interfaces, aud Lielp verily the method.
Implementation of the complex algorithm is simplified with the uce of hybrid
C+4 and Fortran libraries developed at Lawrence Livermore National Labs.

The detsils of the mcthod arc bascd on the papers mentioned above, with
adaptations and improvements for the Stefan problem. Our front reconstrue-
tion algorithm will be based on work done by Pilliod and Puckett {10). Their
approach provides a mothod of spproximating an intcrface, based on a linear,
least-squares fit to the Jocal array of volume fractions. The algoritlim is shown
to be second-order accwate in space, even when applied to complicated shapes.
For the Stefan problem, the interfice movee normal to itsclf, with a speed pro-
portional to the local temperature gradient. Chern and Colella [§] implemented
shock tnckmg for compressible flow, which is directly applicable to the motion
of the frant in the Stefan problem. By coupling the reconctruction algorithm
with an operatoz-»pllt version of this front-tracking schieme ( 1nodified to be
minimum and maximum prescrving ), we will be able tu advauce the phase
boundary in time. Conservation of eneryy is enforced by adding equivalent heat
sourves, due to cuthalpy of formation, where necessary.

Solving the temperatute equation on the irregular, r.luzmging domain will be
the next step. First, the half-time velocities will be found using an algorithm
similar to those in [13] An intermediate MAC profection guarantees that the
adge-centered velocitics have zero diccrete divergenee, moking them ideal for
computmg a tilne-centered, tempersture convection term. This will then be
used in the right-hand side of the temperature equation, along with the en-
thalpy of formation mentioned esclier. The melting point of the substance will
tequite a *Dirichlet boundary condition for temperature on the interface; how-
cver, prescribing the front motion is equivalent to specifying the temperature
gradient at the interface, too. This conflict will be surmounted by ignoting the
constraint on the temperature gradient; it is determined by fitting a quadratic
through values interpolated from full cells near the iuteiface, using the normal
and midpoint of the recanstructed front. The implicit discretization of the diffu-
sion equation will be solved using multi-grid iterations to accelerate convergence
{11) (19] . Once the ncw temperature field is determined, the eucrgy loss due
to 2 mismatch in gradients will he added into the temperature equation on the
next time slep.

Finally, the front position and tempcrature fields will be used in the inte-
gratian of the Boussinesq equations for flaw in the melt. The remainder of the
algorithm is simnilar to that presented in [13] and {14). The main differences
will be the inclusion of viseosity, which demands no-slip boundary conditions at
all interfaces. The viscous forces will be treated similarly to the heat equation,
with the advection termis and body forees (due to gravity and externally applied
magnetic ficlds) serving as sources in the Crank Nicholson-type discretization.
In the final step, the velocity field will be projected onto its divergence-free part.

Progress to date has focussed on accurate integration of the Stefan prob-
lem, and the heat equation with Dirichlet-type boundary conditions. First,

I |
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Mr. Johansen has thoroughly tested a one-dimensional method for the classical
Stefan problem, which represents a balance between heat conduction and en-
thalpy of formation. The interfacc gradient is calculated using a quadratic fit
to necarby temperature valies; after the front is advanced, conservation is cn-
forced by adding sppropriate source terms. The quadratic temperature fit and
Iagged conservation have becn ohown to be stable for ceitain discretizations;
results demonstrate second-order convergence in space, and first-order accuracy
in timc, regardless of Stefan number. Second, the solution of Dirichlet-Lype
Poisson prablems on irregular, two-dimensionsl domains, provides part of the
titne-stepping algorithm for the Stefan problem in mote than one dimension.
The caleulation of interface gradients, based on quadratic fits to interior val-
ues, has been demanstrated as globally second otder aceurate, even for front
representations containing arbitrarily small cells,

Mr. Johanren will have a working code by Decernber, 1996. Adaptive so-
lution of the Stefan problem in mnltiple dimensions will be finished by June,
1996; it will provide the crucial step neceded to incorporate tlie front motion inte
a Cartesian grid, incomnpregsible Navicr-Stokes solver, which is Leing developed
at both UC Berkeley and LLNL, and will be completed by September, 1996.
The remaining thiee months will be spent testing the algorithm, by verifying
it against experimental and computationn! results; externally-applied magnetic
fields' might be included in the model in Spring of 1997. This work will be s
major step in applying finite-difference algorithms to real engineeting problems.
The simulation of semiconductor substrate crystal growth will be a new appli-
cation of the Cartesian grid method, with front tracking, conveetion of heat and
melt compocition, end adaptive refiuemnent of the finité-difference grid around
signiticant featurex. ‘
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